Find Adaptive Boxplot Coefficient `coef` via Grid Search
Source:R/find_optimal_coef.R
find_optimal_coef.Rd
This function performs a grid search to determine the optimal adaptive boxplot coefficient `coef` for each column of a contingency table, ensuring the target false discovery rate (FDR) is met.
Usage
find_optimal_coef(
contin_table,
n_sim = 1000,
target_fdr = 0.05,
grid = 0.1,
col_specific_cutoff = TRUE,
exclude_small_count = TRUE
)
Arguments
- contin_table
A matrix representing the \(I \times J\) contingency table.
- n_sim
An integer specifying the number of simulated tables under the assumption of independence between rows and columns. Default is 1000.
- target_fdr
A numeric value specifying the desired level of false discovery rate (FDR). Default is 0.05.
- grid
A numeric value representing the size of the grid added to the default value of
coef = 1.5
as suggested by Tukey. Default is 0.1.- col_specific_cutoff
Logical. If TRUE, then a single value of the coefficient is returned for the entire dataset, else when FALSE specific values corresponding to each of the columns are returned.
- exclude_small_count
A logical indicating whether to exclude cells with counts smaller than or equal to five when computing boxplot statistics. Default is
TRUE
.
Value
A list with the following components:
-
coef: A numeric vector containing the optimal coefficient
`coef` for each column of the input contingency table.
FDR: A numeric vector with the corresponding false discovery
rate (FDR) for each column.
Examples
# \donttest{
# This example uses the statin49 data
data(statin49)
find_optimal_coef(statin49)
#> $coef
#> [1] 2.6 3.4 2.7 2.8 2.6 2.6 1.9
#>
#> $FDR
#> [1] 0.043 0.050 0.048 0.049 0.042 0.049 0.045
#>
# }