Computing the standardized Pearson residuals for a given \(I \times J\) contingency table
Source:R/get_std_pearson_res.R
get_std_pearson_res.Rd
Compute the standardized Pearson residuals for a given \(I \times J\) contingency table.
Examples
# Create a 6 by 4 data matrix
set.seed(42)
dat_mat <- matrix(rpois(6 * 4, 20), nrow = 6)
dat_mat
#> [,1] [,2] [,3] [,4]
#> [1,] 26 19 25 18
#> [2,] 17 29 24 12
#> [3,] 20 19 23 27
#> [4,] 15 25 22 21
#> [5,] 19 30 24 21
#> [6,] 26 13 16 18
# Check the format of the data matrix and assign row and column names
# to the data matrix
contin_table <- check_and_fix_contin_table(dat_mat)
contin_table
#> drug_1 drug_2 drug_3 drug_4
#> AE_1 26 19 25 18
#> AE_2 17 29 24 12
#> AE_3 20 19 23 27
#> AE_4 15 25 22 21
#> AE_5 19 30 24 21
#> AE_6 26 13 16 18
# Compute the standardized Pearson residuals
get_std_pearson_res(contin_table)
#> drug_1 drug_2 drug_3 drug_4
#> AE_1 1.2964248 -1.152311 0.48785428 -0.6206598
#> AE_2 -0.7929358 1.980521 0.66049322 -1.9625894
#> AE_3 -0.4107602 -1.217290 -0.11400275 1.8144605
#> AE_4 -1.4173509 0.811626 0.04067809 0.5479210
#> AE_5 -0.9913254 1.311559 -0.19363617 -0.1648137
#> AE_6 2.4694917 -1.822336 -0.92405981 0.3666991